腈纶装置单体废气环保治理项目 竣工环境保护验收监测报告表

建设单位: 中国石油化工股份有限公司齐鲁分公司编制单位: 淄博环益环保检测有限公司

2020年5月

建设单位:中国石油化工股份有限公司齐鲁分公司

法人代表: 韩峰

编制单位:淄博环益环保检测有限公司

法人代表: 郭尚刚

项目负责人: 厉建苗

建设单位:中国石油化工股份有 编制单位:淄博环益环保检测有

限公司齐鲁分公司 限公司

电话: 0533-3576365 电话: 0533-2340131

传真: 0533-3576365 传真: 0533-3183088

邮编: 255000 邮编: 255000

地址:淄博市高新区金晶大道 202 地址:淄博张店区人民西路 16号

号腈纶厂

表一

建设项 目名称	腈纶装置单体废气环保治理项目										
建设单位名称		中国石油化工股份有	有限公司齐鲁分	公司							
建设项目性质		新建 改扩建	技改 √ 迁建	<u> </u>							
建设地点	淄博市高新区金晶大道 202 号腈纶厂										
主要产		/									
品名称 设计生			:力为 4600Nm ¾	gh							
产能力 实际生		实际设计处理能	:カ为 1377Nm 3	jh							
产能力 建设项 目环评	2019年2月	实际设计处理能力为 1377Nm nh 2019年2月 开工建设时间 2019年8月									
	2020年1月	验收现场监测时 间	2020.4.17-2020.4.18								
环评报 告表审 批部门	淄博高新技术 产业开发区环 境保护局										
环保设 施设计 单位	山东齐鲁石化 工程有限公司	环保设施施工单 位	山东齐鲁	石化建设	有限公司						
投资总 概算	2106 万元	环保投资总概算	2106 万元	比例	100%						
实际总 概算	2226 万元	环保投资	2226 万元	比例	100%						
	1、《中华人民共	和国环境保护法》(2	2015年1月1日	日起施行》);						
	2、国务院令(2	017) 第 682 号令《第	建设项目环境份	保护管理条	长例》;						
	3、生态环境部分	公告 2018年 第9号	《建设项目竣工	L环境保护	户验收技术指						
	南 污染影响类》	;									
验 收 监测依据	 4、环境保护部:	环发[2012]77 号《关	于进一步加强环	不境影响;	平价管理防范						
(火) (人) (人)	 环境风险的通知	»;									
	 5、鲁环发[2013]	4号《山东省环境保	护厅关于进一步	步加强环境	竟安全应急管						
	 理工作的通知》,	2013年1月;									
		R技术有限责任公司 R技术有限责任公司	《腈纶装置单位	本废气环色	保治理项目环						

境影响报告表》:

- 7、淄博高新技术产业开发区环境保护局《关于中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目环境影响报告表的审批意见》淄高新环报告表[2019]14号;
- 8、中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目竣工环保验收监测委托书

标准依据:

- 1、《挥发性有机物排放标准第6部分:有机化工行业》(DB37/2801.6—2018) 表 1 II 时段、表 2 标准:
- 2、《区域性大气污染物综合排放标准》(DB37/2376—2019)重点控制区标准
- 3、《恶臭污染物排放标准》(GB14554-93)表2标准
- 4、《石油化学工业污染物排放标准》(GB31571-2015)表 2标准
- 5、《污水排入城镇下水道水质标准》(GB/T31962-2015) B 等级标准
- 6、光大水务(淄博)有限公司协议标准
- 7、《工业企业厂界环境噪声排放标准》(GB12348—2008)中2类标准
- 8、《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及 其修改单标准;《危险废物贮存污染控制标准》(GB18597-2001)及其修 改单标准

测评价标号、服值

验收监

标准限值:

废气污染物排放标准

	有组织	?排放			
名称	最高允许排放	最高允许排放	无组织	执行标准	
	浓度(mg/m³)	速率(kg/h)			
VOCs	60	3.0	2.0	DB 37/	
丙烯腈	0.5	——	——	2801.6—2018	
SO_2	50			DB 37/	
NOx	100	——	——	2376—2019	
二甲胺(参 照三甲胺)	/	0.97 (20m)	0.08	GB14554-93	
氨	/	8.7 (20m)	1.5		

pH 6.5~9.5 / 6.5~9.5 COD ≤500 / 500 氨氮 ≤45 / 45 总氮 / 70 70 丙烯腈 ≤2 2 / 硫酸盐 ≤600 / 800 悬浮物 / 400 《工业企业厂界环境噪声排放标准》(GB12348-2008) 中 2 类标准 时段 昼间 标准值/dB(A) 60 50	污染物名称		で水务(淄 限公司浓度 (mg/L) GB31571-2015 淳 度限值(mg/L)			5 XX	GB/T31962-2015E 等级浓度限值 (mg/L)
氨氮 ≤45 / 45 总氮 / 70 丙烯腈 ≤2 2 / 硫酸盐 ≤600 / 800 悬浮物 / 400 《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准 时段 昼间 夜间	рН				/		6.5~9.5
总氮 / 70 丙烯腈 ≤2 2 / 硫酸盐 ≤600 / 800 悬浮物 / 400 《工业企业厂界环境噪声排放标准》(GB12348-2008) 中 2 类标准 时段 昼间 夜间	COD		500		/		500
丙烯腈 ≤2 2 / 硫酸盐 ≤600 / 800 悬浮物 / 400 《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准 时段 昼间 夜间	氨氮	\leq	£45		/		45
 硫酸盐 ≤600 / 800 悬浮物 / 400 《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准 时段 昼间 夜间 	总氮		/		/		70
悬浮物 / 400 《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准 时段 昼间 夜间	丙烯腈	<	€2		2		/
《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准 时段 昼间 夜间	硫酸盐	\leq	600		/		800
时段 昼间 夜间	悬浮物		/		/		400
	《工业企业厂	界环境噪	東声排放标	活准》(G	B123	48-200	8) 中 2 类标准
标准值/dB(A) 60 50							
	时段		星	圣间			夜间
)					

工程建设内容:

中国石油化工股份有限公司齐鲁分公司(以下简称齐鲁石化公司)腈纶厂现有腈纶装置一套,采用二步法干法纺丝工艺生产腈纶短纤维、腈纶丝束。

本项目对 G1-JH 聚合、洗涤反应单体废气、G2-JH 溶剂回收塔顶废气、G4-JH 中间罐区储罐挥发废气、G24-CY 原料罐区储罐挥发废气现有废气处理措施进行升级 改造,建 1377Nm ħ 废气处理设施 1 套,采用"两端冷凝回收+碱洗脱硫+催化氧化+SCR 脱硝"工艺进行废气处理。

受中国石油化工股份有限公司齐鲁分公司的委托,淄博环益环保检测有限公司 承担该项目的环保竣工验收监测工作,进行现场实地勘察和资料核查在此基础上编 制《中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目验收监 测方案》,确定竣工验收监测内容。2020.4.17-2020.4.18,对该项目污染物排放情况 进行了现场监测,结合监测结果、有关文件和技术资料,编制《腈纶装置单体废气 环保治理项目竣工环境保护验收监测报告表》。

1、建设地点

项目位于淄博市高新区金晶大道 202 号齐鲁石化公司腈纶厂内,厂区北侧为山东开泰石化股份有限公司,东侧为张东铁路、隔路为空地,南侧为淄博汇驰汽车销售服务有限公司、G20 高速,西侧为金晶大道、隔路为山东中外运弘志物流有限公司。项目周界交通便利、公共配套工程完善。(项目地理位置图详见附图 1)

2、项目规模及内容

项目总投资 2226 万元,建 1377Nm 为 废气处理设施 1 套,采用"两端冷凝回收+碱洗脱硫+催化氧化+SCR 脱硝"工艺进行废气处理。建设项目位于淄博市高新区金晶大道 202 号齐鲁石化公司腈纶厂内 DMF 罐区南侧空地。项目北邻 DMF 罐区,东侧为罐区东路,南侧为中间罐区,西邻罐区西路。本项目东西向布置,由东向西依次为氨水罐、碱洗单元、油气两端冷凝回收单元、不凝气催化氧化单元、CEMS 分析小屋,排气筒位于不凝气催化氧化单元西北角。(项目平面布置图详见附图 2)

项目基本情况详见表 2-1。

			表 2-1 项目基本情况一览表	
序号	工程类 别	工程名称	环评建设	实际建设
1		两端冷凝回 收	油气回收处理单元1套。	与环评一致
2		碱洗脱硫	碱洗处理单元1套。	与环评一致
3	主体工 程	催化氧化	催化氧化处理单元1套。	与环评一致
4		脱硝系统	SCR 反应器及配套氨水储罐 1 套。	与环评一致
5		分析	CEMS 及配套分析小屋 1 座。	与环评一致
6		在中间罐区 MCC 室新增低压配电柜 1 台 配电 低压配电柜,电源引自 1B 变电所低压配 电屏 01P-16 备用回路。		与环评一致
7	公用工	电信	依托现有电信系统,设置手动报警按钮和 声光报警器。	与环评一致
8	程	仪表空气	依托现有仪表风管线,不新设仪表空气设 施。	与环评一致
9		供水	依托现有给水设施及管线。	与环评一致
10		废气	废气经废气处理设施处理后,尾气通过 1 根 20m 高排气筒排放。	与环评一致
11	环保工	废水 碱洗废水排入现有污水管网,最终排		与环评一致
12	程	固废	危险废物暂存于危废库,委托有资质的单 位代为处理。	与环评一致
13		噪声	设备基础减震等措施。	与环评一致

备注: 齐鲁石化司腈纶厂公用工程、废水依托山东开泰石化股份有限公司(简称开泰石化)。

3、主要生产设备

本项目主要工艺设备见表 2-2.

表 2-2 主要工艺设备一览表										
序号	设备名称	规格	设备数量	实际建设						
		油气回收处理单元								
1	冷冻机组 风冷式 制冷剂: 氟利昂 R404A		1 台	1台						
2	气液分离器	重力式 材质: 304	1台	3 台						
3	回收泵	功率: 1.5 kW	1台	1台						
4	两端冷凝器	材质: 304	1台	3 台						
5	工艺管线、阀门、管件	材质: 304	1 套	1 套						
6	一次仪表	/	1 套	1 套						
7	工艺底座	/	1 套	1 套						
		催化氧化处理单元								
1	CO 反应器	材质: 304	1台	1台						
2	SCR 反应器	材质: 304	1台	1台						
3	尾气换热器	材质: 304	1台	1台						
4	电加热器	功率: 20 kW	1台	1台						
5	增压风机	材质: 304 功率: 7.5 kW 防爆等级: dIIBT4 防护等级: IP55 电机: 防爆电机	1 台	1台						
6	膨胀节	材质: 304	1 套	1 套						
7	撬装内工艺管线、管件、 阀门	材质: 304	1套	1套						
8	尾气调节蝶阀、调节阀	材质: 304	1 套	1 套						
9	撬装内一次仪表	/	1 套	1 套						
10	公用工艺底座	/	1 套	1 套						
		碱洗处理单元								
1	碱洗塔	材质: 304L 填料塔	1台	1台						
2	碱液循环泵	功率: 5.5 kW	2台(1开1 备)	2台(1开1 备)						
3	工艺管线、阀门、管件	材质:碳钢	1 套	1 套						
4	一次仪表		1 套	1 套						
		配套的氨水储罐	•	•						
1	氨水罐	DN3600xH4800 材质: 304	1台	1台						
2	水封罐	DN700xH1400 材质: Q235	1台	1台						
3	氨水卸车泵 (防爆)	流量 40m³/h, 30m, 11kW	1台	1台						

		材质: 304		
4	氨水计量泵(防爆)	流量 100L/h,80m, 0.55kW 材质: 304	1 台	1台
CEMS	及配套分析小屋(防爆)	/	1 套	1 套

4、劳动定员、工作制度

本项目职工定员 6 人,由齐鲁石化公司腈纶厂现有职工调配,不新增职工。 工作制度:生产车间人员按四班三运转工作制,年工作时间 8760 小时。

5、供水

本项目用水主要为碱洗脱硫用水、油气回收处理单元循环冷却水、氨水罐喷淋 用水,由开泰石化通过厂区管网提供。

6、排水

项目排水主要是碱洗废水,约 2393.6m³/a 排入现有污水管网,最终排入开泰石 化污水处理站处理,处理达标后排放至光大水务(淄博)有限公司水质净化三分厂。

5、原辅材料消耗及水平衡:

(1) 本项目原辅材料使用情况见表 2-3。

表 2-3 原辅材料及能源消耗一览表

序号	材料名称	年耗量	备注								
	原辅材料消耗情况										
1 本项目为废气处理项目,不存在其它原材料的消耗。											
2	CO 催化剂	0.12m³/三年	外购								
3	SCR 催化剂	0.11m³/三年	外购								
4	氨水(9%)	200t/a	外购								
5	30%氢氧化钠碱液	460t/a	外购								
		能源消耗情况									
1	电	31.2 万 kWh/a	依托现有								
2	仪表空气	12 万 Nm³/a	依托现有								
3	脱盐水	2880m³/a	依托现有								
4	新鲜水	80m ³ /a	依托现有								
(2) 7	本项目供排水情况介绍	:									

供水:本项目用水主要为碱洗脱硫用水、油气回收处理单元循环冷却水、氨水罐喷淋用水,由开泰石化通过厂区管网提供。

排水:本项目油气回收处理单元循环冷却水、氨水罐喷淋用水蒸发损耗。项目排水主要是碱洗废水约 598.4m³/a 在设备运行过程中损耗,另约 2393.6m³/a 排入现有污水管网,最终排入开泰石化污水处理站处理,处理达标后排放至光大水务(淄博)有限公司水质净化三分厂。

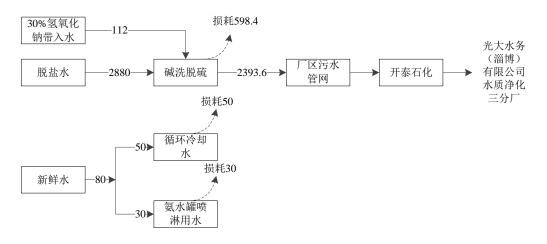
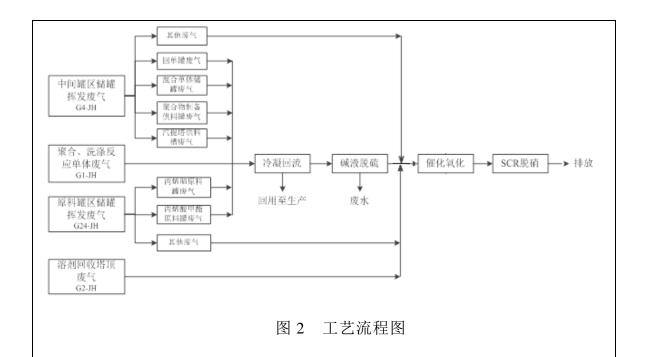


图 1 项目水平衡图

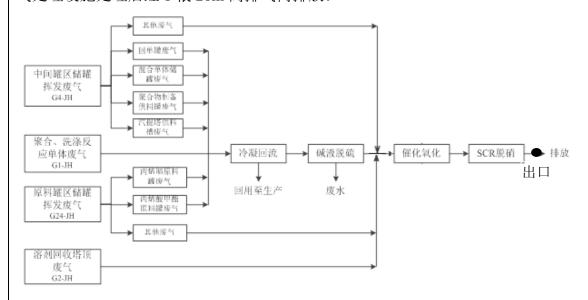

工艺流程简述

本项目对 G1-JH 聚合、洗涤反应单体废气、G2-JH 溶剂回收塔顶废气、G4-JH 中间罐区储罐挥发废气、G24-CY 原料罐区储罐挥发废气现有废气处理措施进行升级改造,建设 1377Nm 剂 废气处理设施 1 套,采用"两端冷凝回收+碱洗脱硫+催化氧化+SCR 脱硝"工艺进行废气处理。

油气回收装置针对 G1-JH 废气、G4-JH 中部分废气(回单罐废气、混合单体储罐废气、聚合物制备供料罐废气、汽提塔供料槽废气)以及 G24-CY 中部分废气(丙烯腈原料罐废气、丙烯酸甲酯原料罐废气)中的二氧化硫、丙烯腈和丙烯酸甲酯进行两端冷凝回收,回收过程中产生的不凝气经过碱洗塔脱除二氧化硫、丙烯腈,后与 G4-JH 中其他废气、G24-CY 中其他废气和 G2-JH 废气合并后送入催化氧化处理系统,催化氧化后的废气经过 SCR 脱硝后,经 1 根 20m 高排气筒排放。

拆除了原 G1-JH、G2-JH、G4-JH、G24-CY 废气处理装置及对应排气筒。 工艺流程简述:

- (1) 两端冷凝回流: G1-JH 废气、G4-JH 中部分废气(回单罐废气、混合单体储罐废气、聚合物制备供料罐废气、汽提塔供料槽废气)以及 G24-CY 中部分废气(丙烯腈原料罐废气、丙烯酸甲酯原料罐废气)进入冷却器 E-1101,用冷冻机组 U-1101 产生的-25℃冷剂进行两端冷凝,将废气冷却至-20℃回收其中的二氧化硫、丙烯腈和丙烯酸甲酯,两端冷凝液回收至回单罐。
- (2)碱洗脱硫:两端冷凝回流后的不凝气进入碱洗塔 T-2101,在碱洗塔中通入脱盐水和氢氧化钠溶液,将不凝气中的二氧化硫脱除,产生的碱性废水含有低于5%的亚硫酸钠,排入废水管网。同时,不凝气中的丙烯腈在碱液中会发生聚合反应,产生聚合物沉淀,去除不凝气中的丙烯腈。
- (3)催化氧化:碱洗后的不凝气与 G4-JH 中其他废气、G24-CY 中其他废气、G2-JH 废气合并后进入催化氧化处理系统,废气在尾气换热器 E-3101 (开车时采用电加热器 E-3102 加热)升温后进入 CO 反应器 R-3101 进行催化氧化反应,将挥发性有机物转化为二氧化碳、水和氮氧化物。
- (4) SCR 脱硝:催化氧化后的废气与补充的氨水混合进入到 SCR 反应器 R-3102,将氮氧化物转化为 N2,处理后的废气经 20m 高排气筒(G1)排入大气。 SCR 脱硝过程中氨逃逸率<3ppm。

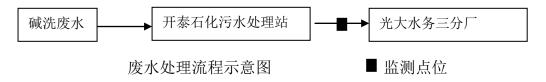


表三

主要污染源、污染物处理和排放(附处理流程示意图,标出废水、废气、厂界噪声监测点位)

1、废气分析

本项目废气主要为 G1-JH 聚合、洗涤反应单体废气、G2-JH 溶剂回收塔顶废气、G4-JH 中间罐区储罐挥发废气、G24-CY 原料罐区储罐挥发废气,废气主要成分是 VOCs、丙烯腈、丙烯酸甲酯、二甲基甲酰胺、 SO_2 、二甲胺,同时,催化氧化处理污染物会产生二次污染物 NOx,SCR 脱硝会产生二次污染物氨。废气经废气处理设施处理后经 1 根 20m 高排气筒排放。



废气处理流程示意图

●监测点位

2、废水分析

本项目废水主要为碱洗废水,年产生量约 2393.6m³/a,废水中主要污染物为 COD、氨氮、总氮、硫酸盐、丙烯腈、SS等,废水经现有污水管网排入开泰石化 污水处理站处理,处理达标后排放至光大水务(淄博)有限公司水质净化三分厂。

3、固废分析

本项目两端冷凝回流产生 64.856t/a 物料,其中包括二氧化硫 20.148t/a、丙烯腈 3.157t/a、丙烯酸甲酯 41.551t/a。根据《固体废物鉴别标准 通则》(GB34330-2017)"6.1 a)任何不需要修复和加工即可用于原始用途的物质"不作为固体废物管理,本

项目两端冷凝回流的二氧化硫、丙烯腈、丙烯酸甲酯暂存于回单罐回用于生产,可以不作为固体废物管理。

本项目产生的固体废物主要为废催化剂,项目 CO 催化剂每次填装量 0.12m^3 (约 500kg/m^3),SCR 催化剂每次填装量 0.11m^3 (约 380kg/m^3),催化剂约 3 年更换一次,则废 CO 催化剂年产生量 0.02t/a,废 SCR 催化剂产生量 0.014t/a。

- (1) 废 SCR 催化剂主要成分为 TiO₂、WO₃、V₂O₅,根据《国家危险废物名录》(环保部令第 39 号) 废 SCR 催化剂属于 HW50 废催化剂中环境治理行业烟气脱硝过程中产生的废钒钛系催化剂,废物代码 HW50,772-007-50,暂存于危废库,委托有资质的单位代为处理。
- (2) 废 CO 催化剂,全过程按照危险废物严格管理,暂存于危废库,委托有资质的单位代为处理。

4、噪声分析

本项目噪声源主要是营运过程中冷冻机组、泵、风机等机械设备运转产生噪声,噪声值约85dB(A)。通过采取相应减震、隔音、降噪等措施以降低设备噪声对周围环境的影响。

建设项目环境影响报告表主要结论及审批部门审批决定:

建设项目环境影响报告表的主要结论:

一、项目概况

中国石油化工股份有限公司齐鲁石化公司腈纶厂现有腈纶装置一套,采用二步法干法纺丝工艺生产腈纶短纤维、腈纶丝束。

本项目拟对 G1-JH 聚合、洗涤反应单体废气、G2-JH 溶剂回收塔顶废气、G4-JH 中间罐区储罐挥发废气、G24-CY 原料罐区储罐挥发废气进行治理,拟建 4600Nm ¾ 废气处理设施 1 套,采用"两端冷凝回收+碱洗脱硫+催化氧化+ SCR 脱硝"工艺进行废气处理。两端冷凝回收 G1-JH 废气、G4-JH 废气以及 G24-CY 中丙烯腈、丙烯酸甲酯储罐废气中的二氧化硫、丙烯腈和丙烯酸甲酯,不凝气经过碱洗塔脱除二氧化硫、丙烯腈后与 G24-CY 中二甲基甲酰胺储罐废气、G2-JH 废气合并后送入催化氧化处理系统,催化氧化后的废气经 SCR 脱硝后,通过 1 根 20m 高排气筒排放。

二、产业政策符合性分析

(1)本项目为废气治理工程,属于《产业结构调整指导目录(2011年本)》(2013年修订)鼓励类中第三十八条环境保护与资源节约综合利用第 15款"三废"综合利用及治理工程。本项目为鼓励类项目,符合国家产业政策。

本项目属于淄博市人民政府办公厅发布的《关于印发淄博市产业结构调整指导意见和指导目录的通知》(淄政办发【2011】35号)中鼓励类中第三十一条资源节约和综合利用第8款"三废"综合利用及治理工程。本项目为鼓励类项目,符合淄博市的产业政策要求。

综上,本项目的建设符合国家和地方产业政策。

- (2)本项目于齐鲁石化司腈纶厂内建设,不新增用地。项目用地不属于国土资源部、国家发展和改革委员会 2012 年 5 月 23 日发布的"关于发布实施《限制用地项目目录(2012 年本)》和《禁止用地项目目录(2012 年本)》的通知"中规定的限制类和禁止类,因此符合国家及地方的用地规划。根据《淄博高新技术产业开发区城乡发展规划(2007-2020)》,项目用地属于工业用地,符合淄博高新技术产业开发区城乡发展规划(2007-2020)。
 - (3) "三单一线"符合性分析

本项目不在生态保护红线区范围内,评价区环境空气质量指标不能满足《环境

空气质量标准》(GB3095-2012)及其修改单二级标准限值要求,评价区域内涝淄河水质可以达到《地表水环境质量标准》(GB3838-2002) V 类标准要求,评价区地下水水源监测指标达到或优于《地下水质量标准》(GB/T14848-2017) III类标准,评价区声环境质量符合《声环境质量标准》(GB3096-2008) 2 类标准的要求。本项目符合资源利用上限要求,本项目不在负面清单之列。

- (4) 项目建设符合山东省环境保护厅鲁环发[2016]162 号文件的要求。
- (5)项目建设符合山东省环境保护厅鲁环发[2017]331号文件的要求。

三、环境现状结论

1、大气环境质量现状

评价区内环境空气质量不能满足《环境空气质量标准》(GB3095-2012)及其修改单二级标准限值要求。

2、地表水环境质量现状

该区域地表水为涝淄河,该段功能区划分为地表水 V 类,该河段地表水满足《地表水环境质量标准》(GB3838-2002) V 类标准。

3、地下水环境质量现状

该区域地下水符合《地下水质量标准》(GB/T14848-2017)Ⅲ类标准。

4、噪声环境质量现状

该项目区域环境噪声符合《声环境质量标准》(GB 3096-2008)中2类环境噪声限值要求,声环境质量良好。

四、污染物排放情况

本项目施工期内容主要为打造设备基础、安装新设备,防腐保温和调试,对外 环境的影响较小,且随施工期结束而消失,因此,本次评价不对施工期产生的环境 影响进行分析。

1、大气环境影响分析

G1-JH聚合、洗涤反应单体废气、G2-JH溶剂回收塔顶废气、G4-JH中间罐区储罐挥发废气、G24-CY原料罐区储罐挥发废气经废气处理设施处理后,VOCs、丙烯腈、二甲基甲酰胺、丙烯酸甲酯排放可以满足《挥发性有机物排放标准第6部分:有机化工行业》(DB 37/2801.6—2018)表1II时段、表2标准;SO₂、NOx排放可以满足《山东省区域性大气污染物综合排放标准》(DB 37/2376—2013)表2重点控制区标准,氨、二甲胺排放参照三甲胺可以满足《恶臭污染物排放标准》(GB14554-93)

表 2 标准,本项目所排放的废气不会对周围大气质量产生明显影响。

2.水环境影响分析

本项目废水主要为碱洗废水,各污染物排放浓度满足与开泰石化的协议标准,排入现有污水管网,最终排入开泰石化污水处理站处理,处理达标后排放至光大水务(淄博)有限公司水质净化三分厂。不会对地表水及地下水产生明显影响。

3.噪声环境影响分析

厂界噪声可以满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中 2 类功能区标准的要求,对周围环境影响较小。

4.固体废物环境影响分析

废 SCR 催化剂(HW50,772-007-50)属于危险废物,废 CO 催化剂全过程按照 危险废物严格管理,暂存于危废库,委托有资质的单位代为处理。

因此,项目产生的固体废物均得到了妥善处理,对周围环境影响较小。

五、环境风险

本项目未构成重大风险源,最大可信事故为: 氨水储罐的泄露。同时考虑本项目为废气处理项目,因此将废气处理设施事故排放做重点分析。本项目在设计、建设和运行中确保环境风险防范措施和应急预案落实的基础上,加强风险管理,从环境风险的角度考虑,本工程的建设是可以接受的。

六、环保"三同时"验收

根据《中华人民共和国环境保护法》规定,建设项目污染防治设施必须与主体工程同时设计、同时施工、同时投入运行,而污染防治设施建设"三同时"验收是严格控制污染源和污染物排放总量、遏制环境恶化趋势的有力措施。本项目应在试运行阶段企业自主进行"三同时"验收,"三同时"验收清单如下表。

类别	验收内容	建设时间
废气	建 4600Nm³/h 废气处理设施 1 套,采用"两端冷凝回收+碱洗脱硫+催化氧化+ SCR 脱硝"工艺	
	建设 1 根 20m 高排气筒	与主体工程
噪声	设备合理布局,采取基础减震,消音等降噪措施	同时建设
废水	碱洗废水经现有污水管网,排入开泰石化污水处理站处理	
危险固废仓库	依托现有	

表 43 建设项目验收一览表

七、综合结论:

综上所述,本项目建设符合产业政策要求:选址合理:生产工艺较先进:采取

了有效的污染防治措施后,污染物实现达标排放;项目具有较好的经济和社会效益。 在严格落实本报告表提出的各项措施的基础上,本项目对周围环境造成的影响较小。 因此,从环保角度讲该项目是可行的。

建议:

详见附件 2。

- 1、企业内部加强环境管理,制定环境保护管理制度,实施清洁生产。加强机械 设备的检查维护和管理;
- 2、落实各项污染防治措施,确保废气处理装置排放的污染物均能实现稳定达标 排放:
- 3、企业应按照有关法律和《环境监测管理办法》等规定,制定监测方案,定期监测:
- 4、企业应按照环境监测管理规定和技术规范的要求,设计、建设、维护永久性 采样口、采样测试平台和排污口标志:
 - 5、如果工艺、规模等发生变化或进行了调整,应按环保部门的要求另行申报。 审批部门审批决定

表五

验收监测质量保证及质量控制:

一、监测分析全过程质量控制

为了确保监测数据具有代表性、可靠性、准确性,在本次监测中对监测全过程包括布点、采样、实验室分析、数据处理等环节进行严格的质量控制。具体措施如下:

- (1) 及时了解工况情况,保证监测过程中工况负荷满足验收要求;
- (2) 合理布设监测点位,保证各监测点位布设的科学性和可比性;
- (3) 监测分析方法采用国家有关部门颁布的标准分析方法,监测人员经过考核并持有合格证书;
- (4) 采样仪器要经过计量部门检定合格,并按照国家环保部发布的《环境监测技术规范》的要求进行全过程质量控制,声级计测量前后要进行自校。
- (5)监测数据严格实行三级审核制度,经过校对、校核,最后由技术负责人审定。
 - 二、现场监测仪器质控措施
 - 1、废气监测分析质量保证及质量控制

表 5-1 崂应 3023 型紫外差分烟气综合分析仪标气校准评价

标准气名称			SO ₂ NO						校准日 期	1 2020 4 16	
被校准仪器	仪器编号	标准气名称	标准气 浓度 (ppm)	1	2	3	稳 定 度 %	质控指标示值偏差%		依据	评价
崂应 3023		SO ₂	30.0	29.3	29.1	28.9	3.0	≤5		73-2007	合格
型紫 外差	HW/FIOFO	SO_2	98.7	97.2	96.7	96.2	2.0	€5		污染源 合 质量保 格	
分烟 气综 合分	HY/FI058	NO	54.4	53.7	53.3	53.0	2.0	≤5	制技力	质量控 术规范 (行)	合格合
析仪		NO	249.0	245.7	245.2	244.7	1.5	≤5			格

表 5-2 HC-1004、3072 采样器流量校准评价

标准校准	器名	崂应	8040型	智能高料 准仪	清度综合	标		F准校准 器编号	НХ	Z/JZ004	校准 时间	1 2020.4.16			
被校准仪	(器名和 第号	尔及	被校 准仪	校准器流量读数				准器流量读数			/min				
被校准仪器名称	仪器:	编号	器流 量示 值 L/min	1	2	3		平均 值	定 度%	标 稳定 度%	标准	隹依据	价价		
	HY/F	I076	500	498.2	497.9	497	'.7	497.9	0.4	€5					
ZR-3920	HY/F	T077	500	498.0	497.7	497	'.4	497.7	0.5	€5		373-2007 泛污染源	合 格		
采样器	HY/F	1078	500	497.9	497.5	497	'.3	497.6	0.5	€5		监测质量保 证与质量控	合 格		
	HY/F	T079	500	497.7	497.4	197	'.1	497.4	0.5	€5		制技术规范 (试行)			
3072 采 样器	HY/F	T051	500	490.8	490.5	490).1	490.5	1.9	€5			合格		

3、噪声监测分析质量保证及质量控制

噪声仪器经过计量部门检定合格,并在有效期内。声级计测量前后要进行自校,测量前后仪器的灵敏度相差不大于±0.5dB。

表 5-3 监测分析仪器一览表

样品类 别	检测参数	仪器编号	仪器名称	规格型号	检定有效期
噪声	工业企业厂 界环境噪声	HY/FI067	多功能声级计	AWA5688	2019/05/30-2020/05/30

表 5-4 仪器校核一览表

标准校准		AWA6221A 声校准器			标准校准器编号				/JZ002
被校准仪 器名称	仪器编号	校准时间			.器测量 校正值	仪器测量 后校正值	指标		评价
					dB	dB			
AWA5688	HY/FI068	2020.4.17	09:00-10:30		94.0	94.0	94dB±0.5		合格
多功能声		2020.4.17	22:00-23:30		94.0	94.0	94dB±0.5		合格
级计		2020.4.18	09:00-10:30		94.0	94.0	94dB±0.5		合格
		2020.4.18	22:00-23:30		94.0	94.0	94dB ±	0.5	合格

表六

验收监测内容:

一、废水

1、监测内容

检测项目	检测位置	采样日期和频次	备注
pH(无量纲)、氨氮、化学需氧量、 悬浮物、总氮、丙烯腈、硫酸盐	污水处理站出口	采样2天,每天4次	

2、监测分析方法

检测项目	方法依据	分析仪器	仪器编号	检出限
pH(无量纲)	GB/T 6920-1986	PHS-3E pH 计	HY/FX023	
- 氨氮	HJ535-2009	722N 可见分光光度计	HY/FX029	0.025mg/L
化学需氧量	НЈ 828-2017	50ml 酸式滴定管	HY/FF008-10	4 mg/L
	GB/T 11901-1989	FA2004B 电子天平	HY/FX016	4 mg/L
	НЈ 636-2012	TU-1901 紫外可见分光光度计	HY/FX007	0.05 mg/L
丙烯腈	НЈ/Т 73-2001	GC-4290 气相色谱仪	HY/FX021	0.6 mg/L
硫酸盐	HJ84-2016	YC7000 离子色谱仪	HY/FX043	0.018 mg/L

二、废气

1、废气监测内容

检测项目	检测位置	采样日期和频次	备注
氨、VOCs、丙烯腈、丙烯腈、三甲胺	 废气排气筒出口 	采样2天,每天3次	
氨、VOCs、丙烯腈、丙烯腈、三甲胺	厂界	采样2天,每天4次	

2、废气监测分析方法

检测项目	检测标准	检测仪器	仪器编号	检出限
二氧化硫	DB37/T 2705-2015	崂应 3023 型紫外差分 烟气综合分析仪	HY/FI058	2 mg/m ³
	DB37/T 2704-2015	崂应 3023 型紫外差分 烟气综合分析仪	HY/FI058	2 mg/m ³
VOCs	НЈ 38-2017	G5 气相色谱仪	HY/FX005	0.06 mg/m ³

VOCs	НЈ 604-2017	G5 气相色谱仪	HY/FX005	0.07 mg/m ³
氨	НЈ 533-2009	722N 分光光度计	HY/FX029	0.01 mg/m ³
丙烯腈	НЈ/Т 37-1999	GC-4290 气相色谱仪	HY/FX021	0.2 mg/m ³
三甲胺	GB/T 14676-1993	GC-4290 气相色谱仪	HY/FX021	2.5×10 ⁻³ mg/m ³

三、噪声

1、监测内容

类别	检测位置	项目	采样日期和频次	采样/分析设备
	厂界东	Leq (A)	采样2天,昼夜各1次	
噪声	厂界南	Leq (A)	采样2天,昼夜各1次	AWA5688多功能声级计
、	厂界西	Leq (A)	采样2天,昼夜各1次	AWA3088多切能严级目
	厂界北	Leq (A)	采样2天,昼夜各1次	

2、监测分析方法

类别	项目	监测依据	监测方法	检出限
工业企业厂 界噪声	Leq (A)	GB 12348-2008	工业企业厂界环境噪声测 量方法	

表七

验收监测期间生产工况记录:

验收监测期间各生产设施及环保设施正常稳定运行,满足验收要求。

验收监测结果:

- 一、废水监测结果
- 1、废水监测结果见表 7-1。

表 7-1 废水监测结果

检测点位		污水处理设施出口							
检测日期		2020	0.4.17			2020	0.4.18		
检测频次 检测项目 (mg/L)	第一次	第二次	第三次	第四次	第一次	第二次	第三次	第四次	
pH(无量纲)	7.75	7.72	7.74	7.75	7.69	7.73	7.70	7.73	
化学需氧量	352	337	349	341	350	341	353	347	
氨氮	8.18	8.10	8.15	8.06	8.18	8.05	8.20	8.11	
悬浮物	27	29	25	30	26	31	27	26	
总氮	69.3	69.7	69.5	69.7	68.8	69.1	68.9	68.6	
丙烯腈	未检出	未检出	未检出	未检出	未检出	未检出	未检出	未检出	
硫酸盐	540	568	572	589	532	560	578	592	

根据两天监测数据,开泰石化污水处理设施出口:废水中 pH 值(无量纲)范围为7.69-7.75,其他各污染物监测浓度日均最大值为 CODcr348mg/L、氨氮 8.14mg/L、悬浮物28mg/L、总氮 69.6mg/L、硫酸盐 567mg/L,均满足《污水排入城镇下水道水质标准》(GB/T31962-2015)表 1 中 B 等级标准要求开泰石化与光大水务(淄博)有限公司水质净化三分厂的接管协议。丙烯腈未检出,满足《石油化学工业污染物排放标准》(GB31571-2015)表 2 标准要求。

- 二、废气检测结果
- 1、有组织监测结果

因废气处理设施采用"两端两端冷凝+碱吸收+CO催化氧化+SCR"工艺处理不同性质的混合废气,各处理工段不具备设施规范的监测口条件,本次验收未检测进口数据。

表 7-2 有组织 (排气筒出口) 监测结果

监测项目	2020 4 17	2020 4 18	排放	达标
血侧切目	2020.4.17	2020.4.18	限值	情况

		第1次	第2次	第3次	第1次	第2次	第3次		
标干气	量 (m³/h)	1476	1582	1499	1245	1268	1227		
二氧	排放浓度 (mg/m³)	<2	<2	<2	<2	<2	<2	50	达标
化硫	排放速率 (kg/h)	/	/	/	/	/	/	/	/
氮氧	排放浓度 (mg/m³)	5	6	6	5	7	5	100	达标
化物	化物 排放速率 (kg/h)	0.007	0.009	0.009	0.006	0.009	0.006	/	/
VOC-	排放浓度 (mg/m³)	2.16	2.13	2.16	2.18	1.99	2.04	60	达标
VOCs	排放速率 (kg/h)	3.19×10 ⁻³	3.37×10 ⁻³	3.19×10 ⁻³	2.71×10 ⁻³	2.52×10 ⁻³	2.50×10 ⁻³	3.0	达标
丙烯	排放浓度 (mg/m³)	未检出	未检出	未检出	未检出	未检出	未检出	0.5	达标
腈	排放速率 (kg/h)	/	/	/	/	/	/	/	/
三甲	排放浓度 (mg/m³)	未检出	未检出	未检出	未检出	未检出	未检出	/	/
胺	排放速率 (kg/h)	/	/	/	/	/	/	0.97	达标
复	排放浓度 (mg/m³)	3.37	3.35	3.96	3.74	3.56	3.48	/	/
氨	排放速率 (kg/h)	4.97×10 ⁻³	5.30×10 ⁻³	5.94×10 ⁻³	4.66×10 ⁻³	4.51×10 ⁻³	4.27×10 ⁻³	8.7	达标

2、无组织监测结果见表 7-3

表 7-3 无组织监测结果

			杉		(mg/m	n ³)	最大值	标准值	达标
采样日期 (mg/m³)	检测点位	第一次	第二次	第三次	第四次	取入阻 (mg/m³)	(mg/m ³)	M 情 况	
		上风向参 照点 1#	1.24	1.16	1.24	1.19			
	VOCs	下风向监 控点 2#	1.53	1.55	1.35	1.40	1.55	2	达
	VOCS	下风向监 控点 3#	1.39	1.39	1.41	1.37	1.55	2	标
2020.4.17		下风向监 控点 4#	1.50	1.41	1.35	1.40			
		上风向参 照点 1#	0.03	0.04	0.04	0.03			
	氨	下风向监 控点 2#	0.05	0.06	0.07	0.06	0.08	1.5	达 标
		下风向监	0.06	0.06	0.07	0.07			

		控点 3#							
		下风向监 控点 4#	0.08	0.07	0.08	0.06			
		上风向参 照点 1#	未检 出	未检 出	未检 出	未检出			
	I V n4	下风向监 控点 2#	未检 出	未检 出	未检 出	未检出	1.14.1		达
	丙烯腈	下风向监 控点 3#	未检 出	未检 出	未检 出	未检出	未检出	0.60	标
		下风向监 控点 4#	未检 出	未检 出	未检 出	未检出			
		上风向参 照点 1#	未检 出	未检 出	未检 出	未检出			
	二田貯	下风向监 控点 2#	未检 出	未检 出	未检 出	未检出	未检出	0.08	达
	三甲胺	下风向监 控点 3#	未检 出	未检 出	未检 出	未检出	小 / 位 山	0.08	标
		下风向监 控点 4#	未检 出	未检 出	未检 出	未检出			
		上风向参 照点 1#	1.20	1.15	1.21	1.18		2	
	VOCs	下风向监 控点 2#	1.90	1.96	1.94	1.91	1.97		达
		下风向监 控点 3#	1.97	1.79	1.86	1.82			标
		下风向监 控点 4#	1.53	1.71	1.52	1.60			
		上风向参照点 1#	0.03	0.02	0.02	0.02			
	氨	下风向监 控点 2#	0.04	0.05	0.04	0.06	0.08	1.5	达
	~	下风向监 控点 3#	0.07	0.07	0.06	0.08			标
2020.4.18		下风向监 控点 4#	0.05	0.06	0.07	0.08			
		上风向参 照点 1#	未检 出	未检 出	未检 出	未检出			
	丙烯腈	下风向监 控点 2#	未检 出	未检 出	未检 出	未检出	未检出	0.60	达
	HUTINE	下风向监 控点 3#	未检 出	未检 出	未检 出	未检出	万 (1 <u>0.</u> 111	0.00	标
		下风向监控点 4#	未检出	未检出	未检出	未检出			
		上风向参照点 1#	未检 出	未检出	未检出	未检出			
	三甲胺	下风向监 控点 2#	未检出	未检出	未检出	未检出	未检出	0.08	达 标
		下风向监 控点 3#	未检 出	未检出	未检 出	未检出			

	下风向监	未检	未检	未检	未检出			
	控点 4#	出	出	出	/ 型 山			

2、无组织监测期间气象参数见表 7-4

表 7-4 无组织监测期间气象参数

日期	时间	温度(℃)	湿度 (%RH)	风向	风速(m/s)	总云 量	低云 量	大气压 (kPa)
	08: 46	9.4	39	西北	2.4	1	0	100.5
2020 4 17	13: 04	16.4	38	西北	2.6	1	0	99.8
2020.4.17	17: 06	10.2	36	西北	2.6	1	0	100.2
	21: 10	8.5	38	西北	2.1	1	0	100.4
2020.4.18	08: 40	13.5	39	东北	2.1	3	2	100.2
	09: 46	14.3	39	东北	2.1	3	2	100.2
	10: 52	15.2	39	东北	2.0	3	2	100.1
	13: 30	17.3	38	东北	2.1	3	2	100.1

3、无组织监测点位布置图

图 7-1 无组织监测布点示意图

4、废气监测结论

根据验收监测结果,有组织排气筒氮氧化物浓度最大值为 7mg/m³,最大排放速率为 0.009kg/h; VOCs 浓度最大值为 2.18mg/m³,最大排放速率为 3.37×10⁻³kg/h; 氨浓度最大值 为 3.96 mg/m³,最大排放速率为 5.94×10⁻³kg/h; 二氧化硫、丙烯腈、三甲胺均未检出; 二氧化硫、氮氧化物的排放浓度满足《区域性大气污染物综合排放标准》(DB37/2376—2019)重点控制区标准(二氧化硫 50mg/m³,氮氧化物 100mg/m³),VOCs 排放浓度、排放速率和 丙烯腈排放浓度满足《挥发性有机物排放标准第 6 部分: 有机化工行业》(DB37/2801.6-2018)

表 1 II 时段和表 2 标准要求(VOCs60mg/m³、3kg/h, 丙烯腈 0.5mg/m³); 氨、二甲胺(三甲胺)排放速率满足《恶臭污染物排放标准》(GB14554-93)表 2 标准要求(氨 8.7kg/h, 三甲胺 0.97kg/h)。

厂界无组织 VOCs 的最大浓度为 $1.97 \, \text{mg/m}^3$,丙烯腈未检出,满足《挥发性有机物排放标准第 6 部分:有机化工行业》(DB37/2801.6-2018)表 3 标准要求(VOCs2.0 $\, \text{mg/m}^3$),氨的浓度最大值为: $0.08 \, \text{mg/m}^3$,二甲胺(三甲胺)未检出满足《恶臭污染物排放标准》(GB14554-93)表 1 标准要求(氨 $1.5 \, \text{mg/m}^3$,三甲胺 $0.08 \, \text{mg/m}^3$)。

三、噪声检测结果

1、噪声检测结果见表 7-5。

-		1	1		
时间	地点	昼间 (dB)	夜间 (dB)	执行标准	结论
	东厂界 1#	53.7	48.0		
2020.4.17	南厂界 2#	55.1	49.1		
	西厂界 3#	54.1	48.6		
	北厂界 4#	53.1	48.7	昼间 60dB	达标
	东厂界 1#	52.4	47.5	夜间 50dB	
2020.4.18	南厂界 2#	52.3	49.0		
2020.4.18	西厂界 3#	53.3	49.2		
	北厂界 4#	53.0	48.7		

表 7-5 噪声检测结果

图 7-2 噪声监测布点示意图

根据以上监测结果,项目的厂界噪声能够满足《工业企业厂界环境噪声排放标准》 (GB12348-2008)中2类标准要求。

四、污染物排放总量

根据废气各污染物排放平均速率,按年运行8760h进行核算污染物排放总量,具体排放数量见下表7-6。

表 7-6 污染物排放总量分析表

污染物	排放速率平均值 kg/h	运行时间 h	污染物排放量 t/a	总量确认指标 t/a	
SO_2	0.001		8.76×10 ⁻³	2.015	
NOx	0.008	8760	0.0701	4.03	
VOCs	2.91×10^{-3}		0.0255	2.418	
注	SO_2 未检出,按照检出限的一半进行核算				

五、项目变动情况

本次验收过程中发现实际建设与环评建设发生变化,详见表 7-7。

表 7-7 项目变更情况一览表

序号	环节	环评设计	实际建设
1	废气处理量	4600Nm ³ /h	1377Nm ³ /h

参照《关于印发环评管理中部分行业建设项目重大变动清单的通知》(环办[2015]52号)的有关要求,"建设项目的性质、规模、地点、生产工艺和环境保护措施五个因素中的一项或一项以上发生重大变动,且可能导致环境影响显著变化(特别是不利环境影响加重)的,界定为重大变动。"本项目为废气治理提升改造项目,项目建设性质、建设地点、废气治理工艺未发生变动,废气处理量实际建设与环评设计不一致,原因为"环评文件的气量是根据原先环保设施风机风量估计的。其中二甲胺废气原先采用等离子装置处理,需用大量空气稀释,稀释后的二甲胺废气和原料储罐、中间罐区、聚合车间反应单体废气流量共计为4600Nm³/h。采用上海东化环境工程有限公司的催化氧化系统处理后,取消了原等离子处理装置,无需大量空气稀释,进催化氧化系统的废气流量为1377Nm³/h。"具体分析见附件4,并且不增加污染因子及污染物排放量,对周围环境的不利影响未加重;本工程变更不属于重大变动。

验收监测结论:

- 一、环境管理情况调查结果
- 1、执行国家建设项目环境管理制度的情况

中国石油化工股份有限公司齐鲁分公司于 2019 年 3 月委托南京科泓环保技术有限责任公司编制了《腈纶装置单体废气环保治理项目环境影响报告表》,淄博高新技术产业开发区环境保护局于 2019 年 3 月 5 日对该项目出具了《关于中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目环境影响报告表的审批意见》(淄高新环报告表[2019]14 号),符合相关法律法规的要求。

2、环境管理制度的建立、执行情况

该项目设置了专门的环境管理机构,建立了环保管理制度,安排专门的环境安全管理人员管理环保档案,确保环保档案的完整性。

3、固废处置情况

本项目产生的固体废物主要为废 CO 催化剂及废 SCR 催化剂。

- (1) 废 SCR 催化剂主要成分为 TiO_2 、 WO_3 、 V_2O_5 ,根据《国家危险废物名录》 (环保部令第 39 号) 废 SCR 催化剂属于 HW50 废催化剂中环境治理行业烟气脱硝过程中产生的废钒钛系催化剂,废物代码 HW50,772-007-50,暂存于危废库,委托有资质的单位代为处理。
- (2) 废 CO 催化剂,全过程按照危险废物严格管理,暂存于危废库,委托有资质的单位代为处理。
 - 4、环保设施投资、运行及维护情况

该项目实际总投资 2226 万元,全部为环保投资,废气排放排气筒安装了二氧化硫、氮氧化物在线监测设施,并与环保主管部门联网。

5、环境风险防范、应急预案的建立及执行情况

该项目建立了《中国石油化工股份有限公司齐鲁分公司腈纶厂突发环境事件应急预案》并在淄博高新技术产业开发区环境保护局进行了备案(备案编号: 370399-2017-009-H),建设了相配套的事故应急设施,定期进行维修保养,并按照国家《突发环境事件应急管理办法》(国家环保部令 2015 年第 34 号)的要求,每年至少组织一次应急演练,每三年修订一次应急预案。

,	环评批复落实情况	
	环评批复	实际建设情况
1	你公司报来的《腈纶装置单体废气环保治理项目环境影响报告表》已收悉,经审核和现场勘查:该项目位于高新区金晶大道 202 号,总投资 2106 万拟对 G1-JH 聚合、洗涤反应单体废气、G2-JH 溶剂回收塔顶废气、G4-JH 中间罐区储罐挥发废气、G24-CY 原料罐区储罐挥发废气现有废气处理措施进行升级改造,拟建 4600Nm³/h 废气处理设施1套,采用"两端冷凝回收+碱洗脱碗+催化氧化+SCR 脱硝"工艺进行废气处理。	验收监测期间,经现场核实,项目实际投资 2226 万元,该项目建设地址,工艺严格按照环评设计施工建设,设计处理风量为1377Nm³/h。
2	设施运行期问要加强管理,确保设施正常运行,保证废气达标排放,厂界外无异味。SO ₂ 、NOx 排放浓度执行《山东省区域性大气污染物综合排放标准》(DB37/2376-2013) 表 2 中重点控制区标准要求,VOCs、丙烯腈、二甲基甲酰胺及丙烯酸甲酯排放浓度分别执行《挥发性有机物排放标准第6部分:有机化工行业》(DB37/2801. 62018)表1II 时段、表 2 标准,氨、二甲胺(参照三甲胺)排放执行《恶臭污染物排放标准》(GB14554-93)表 2 标准。	经过2天的监测,废气排放能够满足各标准要求。
3	碱洗废水要排入公司现有污水管网,最终排入山 东开泰实业有限公司污水处理站委托该公司进行 处理。	该项目废水进入开泰实业污水 处理站进行处理,经检测,外排 废水能够满足标准要求
4	要加强噪声污染控制,在尽量选用低噪声设备的同时,对各噪声源采取隔音、消声、减振、合理布局等措施,确保该项目运营期间厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348 2008)II 类标准(昼间 60DB (A),夜间 50DB (A))的要求。	经现场监测,该项目噪声能够满 足标准要求。
5	要建设符合规范要求的危险废物贮存场所,项目运行过程中产生的废 SCR 催化剂要按照危险废物管理规范进行贮存处置。	该项目依托原有危废库, 危废库 建设较规范, 验收期间, 尚未产 生废催化剂。
6	要严格执行"三同时"制度,项目建成后,你公司应按照《建设项目环境保护管理条例》规定要求及时组织竣工环保验收,验收合格后方可投入使用。	该项目执行"三同时"制度,按 规定程序和时限进行验收。

三、结论

1、中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目,正 常运行,符合竣工验收监测要求。

2、废气结论

根据验收监测结果,有组织排气筒氮氧化物浓度最大值为 $7 mg/m^3$,最大排放速率为 0.009 kg/h; VOCs 浓度最大值为 $2.18 mg/m^3$,最大排放速率为 $3.37 \times 10^{-3} kg/h$; 氨浓度最大值为 $3.96 mg/m^3$,最大排放速率为 $5.94 \times 10^{-3} kg/h$; 二氧化硫、丙烯腈、三甲

胺均未检出; 厂界无组织 VOCs 的最大浓度为 1.97mg/m³, 氨的浓度最大值为: 0.08mg/m³, 二甲胺(三甲胺)、丙烯腈未检出,均满足相关标准要求。

2、废水结论

根据两天监测数据,开泰石化污水处理设施出口废水中 pH 值(无量纲)范围为7.69-7.75,其他各污染物监测浓度日均最大值为 CODcr348mg/L、氨氮 8.14mg/L、悬浮物 28mg/L、总氮 69.6mg/L、硫酸盐 567mg/L,丙烯腈未检出,污水处理厂出水污染物的排放浓度能够满足标准要求。

3、噪声监测结论

通过对中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目两天的监测,其噪声能够满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准要求。

固废分析

本项目产生的固体废物主要为废 CO 催化剂及废 SCR 催化剂。

- (1) 废 SCR 催化剂主要成分为 TiO_2 、 WO_3 、 V_2O_5 ,根据《国家危险废物名录》 (环保部令第 39 号) 废 SCR 催化剂属于 HW50 废催化剂中环境治理行业烟气脱硝过程中产生的废钒钛系催化剂,废物代码 HW50,772-007-50,暂存于危废库,委托有资质的单位代为处理。
- (2) 废 CO 催化剂,全过程按照危险废物严格管理,暂存于危废库,委托有资质的单位代为处理。

5、总量控制结论

根据本次验收监测项目 SO₂、NOx、VOCs 排放量分别为 0.00876t/a, 0.0701t/a, 0.0255t/a 满足总量确认书的要求 SO₂2.015t/a、NOx4.03t/a、VOCs2.418。

6、环保管理检查结论

中国石油化工股份有限公司齐鲁分公司于 2019 年 3 月委托南京科泓环保技术有限责任公司编制了《腈纶装置单体废气环保治理项目环境影响报告表》,淄博高新技术产业开发区环境保护局于 2019 年 3 月 5 日对该项目出具了《关于中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目环境影响报告表的审批意见》(淄高新环报告表[2019]14 号),符合相关法律法规的要求。

该项目成立了专门的环境安全管理部门,并建立了环保管理制度,定期组织对

员工进行培训。

- 6、建议:
- (1) 认真贯彻落实已制定的各项环保制度。
- (2) 加强环保教育的宣传力度, 定期组织员工培训。
- (3)按照国家《突发环境事件应急管理办法》(国家环保部令 2015 年第 34 号)的要求,每三年修订一次应急预案。

附注

本监测表附以下附图:

附图 1、项目地理位置图

附图 2、项目平面布置图

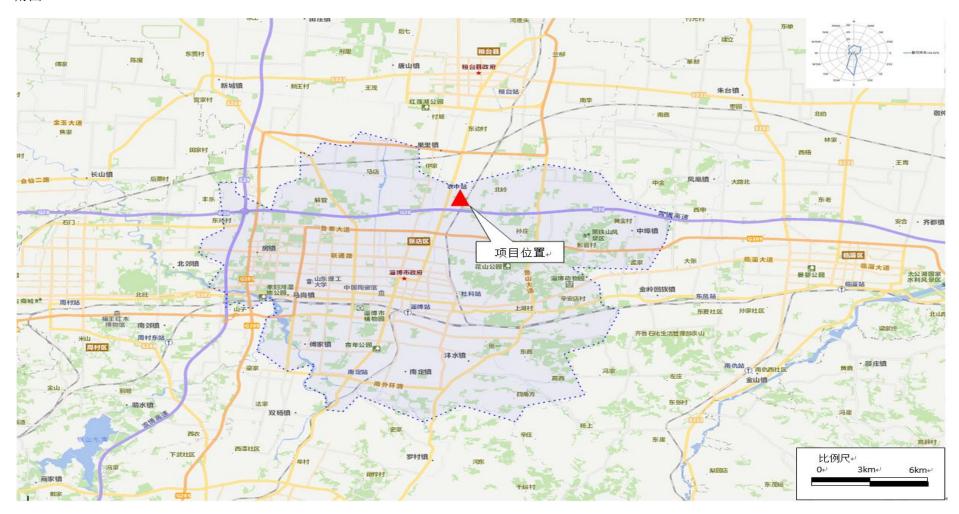
本监测表附以下附件:

附件1、项目验收监测委托书

附件2、项目批复文件

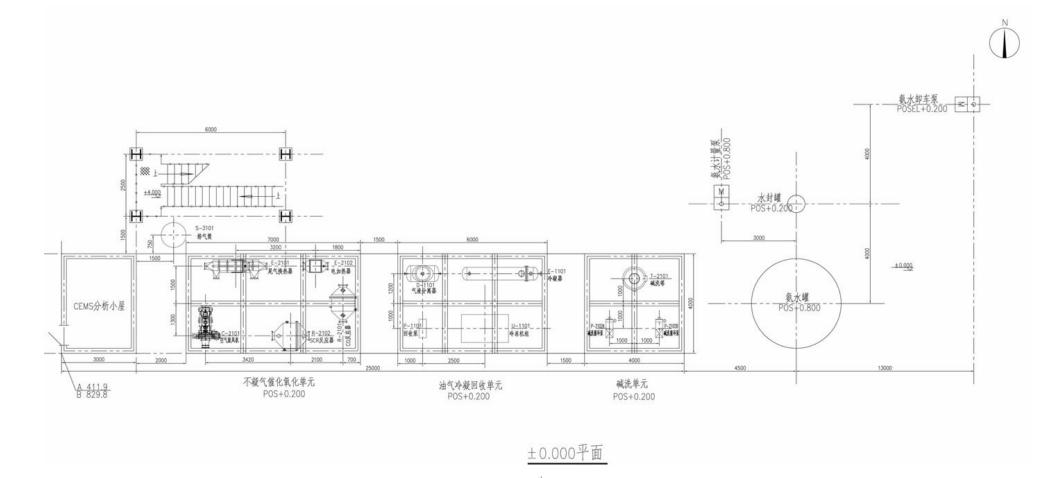
淄高新环报告表[2019]14 号《关于中国石油化工股份有限公司齐鲁分公司腈纶装置 单体废气环保治理项目环境影响报告表的审批意见》

附件3、污水处理协议


附件 4、总量确认书

附件5、关于废气量的情况说明

附件 6、验收检测报告


附件7、建设项目竣工环境保护"三同时"验收登记表

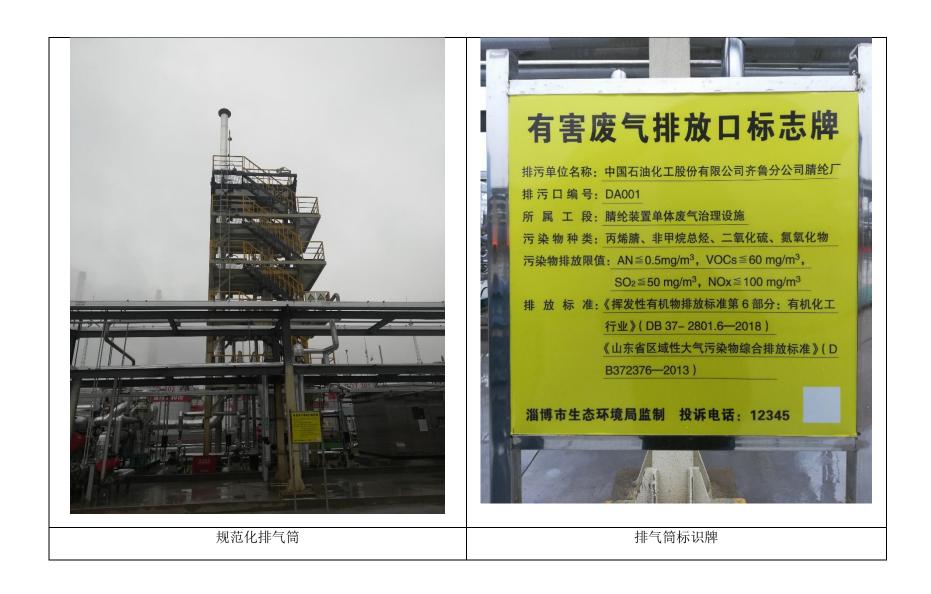
附图 1

项目地理位置图

附图 2

项目平面布置图

附图 3



CO 催化氧化装置

SCR 脱销装置

附件1

中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目验收监测委托书

根据《建设项目竣工环境保护验收管理暂行办法》和《建设项目 环境保护管理条例》等有关规定,需编制"中国石油化工股份有限公 司齐鲁分公司腈纶装置单体废气环保治理项目环境保护验收报告表"。

我公司委托淄博环益环保检测有限公司承担本项目的环境保护 验收工作,请贵单位尽快组织力量,按照有关要求,开展验收工作。

中国石油化工股份有限公司齐鲁分公司

二零二〇年三月

淄博高新技术产业开发区环境保护局

关于对中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目环境影响报告表的审批意见

淄高新环报告表[2019]14号

中国石油化工股份有限公司齐鲁分公司:

你公司报来的《腈纶装置单体废气环保治理项目环境影响报告表》已收悉,经审核和现场勘查:该项目位于高新区金晶大道 202 号,总投资 2106 万拟对 G1-JH 聚合、洗涤反应单体废气、G2-JH 溶剂回收塔顶废气、G4-JH 中间罐区储罐挥发废气、G24-CY 原料罐区储罐挥发废气现有废气处理措施进行升级改造,拟建 4600Nm³/h 废气处理设施1套,采用"冷凝回收+碱洗脱硫+催化氧化+SCR 脱硝"工艺进行废气处理。经我局研究提出如下意见和要求:

- 一、同意你公司建设腈纶装置单体废气环保治理项目。
- 二、设施运行期间要加强管理,确保设施正常运行,保证废气达标排放,厂界外无异味。SO₂、NOx 排放浓度执行《山东省区域性大气污染物综合排放标准》(DB37/2376-2013)表 2 中重点控制区标准要求,VOCs、丙烯腈、二甲基甲酰胺及丙烯酸甲酯排放浓度分别执行《挥发性有机物排放标准第6部分:有机化工行业》(DB37/2801.6-2018)表1 II 时段、表2标准。氨、二甲胺(参照三甲胺)排放执行《恶臭污染物排放标准》(GB14554-93)表2标准。
- 三、碱洗废水要排入公司现有污水管网,最终排入山东开泰实业有限公司污水处理站委托该公司进行处理。

四、要加强噪声污染控制,在尽量选用低噪声设备的同时,对各噪声源采取隔音、消声、减振、合理布局等措施,确保该项目运营期间厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008) II类标准(昼间 60DB (A),夜间 50DB (A))的要求。

五、要建设符合规范要求的危险废物贮存场所,项目运行过程中 产生的废 SCR 催化剂要按照危险废物管理规范进行贮存处置。

六、要严格执行"三同时"制度,项目建成后,你公司应按照《建设项目环境保护管理条例》规定要求及时组织竣工环保验收,验收合格后方可投入使用。

二0一九年三月五日

腈纶厂腈纶装置区污水处理协议

合同签订时间:2016年3月8日 合同签订地点:14.7%193616

甲方: 中国石油化工股份有限公司齐鲁分公司 乙方: 山东开泰石化股份有限公司

根据《中华人民共和国合同法》及有关法律法规的规定,甲乙双方遵循平等自愿、协商一致和诚实信用的原则,现就甲方腈纶厂腈纶装置区污水处理事宜,达成协议如下:

一、委托事项:

甲方委托乙方处理其腈纶厂腈纶装置区产生的污水。

二、处理方式:

甲方委托乙方处理腈纶装置区产生的污水, 乙方应确保污水达到政府 要求的排放标准。

三、协议期限: 2016年4月1日——2016年12月31日。

四、技术标准和要求:

1.甲方正常生产状况下排放的腈纶装置聚合回收工艺污水水质应符合以下要求(废酸水除外):

COD≤2000mg/L、悬浮物≤400mg/L、丙烯腈≤20mg/L、二甲基甲酰胺≤500mg/L、pH: 5~10、氨氮≤80mg/L

- 2.乙方进行污水处理执行甲方管理办法和相关的污水排放水质标准。
- 3.监测数据以乙方的监测结果为主,甲方为辅,若发生异议,由甲方安全环保部门裁决。

1

五、计量

- 1. 甲、乙双方使用双方认可的计量器具进行计量,分别抄表,于结算 日前进行核对,确定结算数量。
- 2. 甲乙双方专业人员按计量仪表的检定周期对相关仪表共同检定,检定记录由双方工作人员签字,保证表记和封印完好。当计量表记发生故障时,结算量按故障前近 10 天的加权平均量乘以故障天数计算。
- 3. 因计量产生争议,双方协商解决,不能协商解决的,由甲方计量部门裁决。

六、委托费用及支付方式

1.委托费用的计算方式:

处理单价=7元/吨(不含税)

月排水量(吨)=月(生产水+生活水+除盐水+消防水)×90%

月委托处理费=月排水量(吨)×处理单价

2.委托费用的支付方式:

甲乙双方于每月月末(每月最后一天)进行结算,由甲方以货币方式支付给乙方。

七、在污水处理过程中,乙方不得将处理事务转委托给第三方。

八、若政府环保政策或要求发生变化,按变化后的政府环保政策或要求执行,本协议相应条款予以调整。

九、法律责任:

- 1.由于甲方超标排放,给乙方造成损失,甲方赔偿乙方损失,致使政府 有关部门对乙方进行处罚的,由甲方承担罚款等处罚。
 - 2.乙方因为服务有质量问题,给甲方造成损失的,由乙方赔偿甲方损失。
 - 3.若甲方未按协议约定支付费用,应按未支付部分银行同期利率的利息

向乙方支付违约金。

4.如乙方被吊销或停止经营资质,应立即告知甲方,甲方有权终止合同, 如造成甲方经济损失的,乙方必须赔偿相应的损失。

5.乙方在处理过程中,若因乙方单方责任造成环境污染的,由乙方承担 经济损失的赔偿责任,并承担一切法律责任。

十、争议解决

本协议如发生争议或纠纷, 甲、乙双方应协商解决。协商不成, 提交 淄博仲裁委员会仲裁。

十一、其它:

1.本协议到期后,若内容无变动,本协议继续执行;若有变动,双方另行协商。

- 2.未尽事宜根据甲乙双方签订的《扶持改制企业框架协议》协商处理。
- 3.本协议一式五份,甲方执三份,乙方执两份,具有同等效力。
- 4.本协议自双方签字盖章之日起生效。

甲方: 中国石油化开股份有限公司齐鲁分公司

法定代表人(负责人):

签约代表:

乙方: 山东共泰西化股份有限公司

法定代表人(负责人)

签约代表に介まり

附件 4 总量确认书

附件 编号: ZBZL (2019) 号
淄博市建设项目污染物总量确认书
项目名称: 腈纶装置单体废气环保治理项目
建设单位(盖章): 中国石油化工股份有限公司齐鲁分公司
申报时间: 2019 年 3 月 1 日
淄博市生态环境局制

项目名称		腈纶装	置单体废气环保治理项目									
建设单位	中国	石油化	上工股份有限公司齐鲁分公司									
法人代表	韩峰	联系人					高云慧					
联系电话	0533-357	6365	传 真				0533-3576365					
建设地点	淄十	淄博市高新区金						晶大道 202 号腈纶厂				
建设性质	新建口改艺						N7722 大气污 染治理					
总投资(万元)	2106	环货投资		2106		投	环保 投资比例		100%			
计划投产日期	2019年12	2 月	4	年工	作时间		8760h					
主要产品	/		产	量 (吨/年)		1				
环 评 单 位	南京科别环保					<u>'À</u>	/					

一、主要建设内容

本项目拟对 G1-JH 聚合、洗涤反应单体废气、G2-JH 溶剂回收塔 顶废气、G4-JH 中间罐区储罐挥发废气、G24-CY 原料罐区储罐挥发废气现有废气处理措施进行升级改造,拟建 4600Nm³/h 废气处理设施 1 套,采用"冷凝回收+碱洗脱硫+催化氧化+SCR 脱硝"工艺进行废气处理。

二、水及能源消耗情况

名 称	消耗量	名 称	消耗量
水 (吨/年)	2960	电 (千瓦时/年)	31.2万
燃煤 (吨/年)	/	燃煤硫分(%)	1
燃油 (吨/年)	/	其 它	1.

三、主要污染	设物排放情况			
污染要素	污染因子	排放浓度	年排放量	排放去向
废水	COD			
12.51	氨氮			
	SO ₂	50mg/m ³	2.015t/a	大气环境
废气	NOx	$100 \mathrm{mg/m^3}$	4.03t/a	大气环境
	VOCs	60mg/m ³	2.418t/a	大气环境
固废(危废)				
夕计 上正日	A 1 10 11 -			

备注: 本项目废水排放量 2393.6 t/a, 经现有污水管网排入开泰石化污水处理站处理。

四、总量指标调剂及"以新带老"情况

中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目建成后 VOCs 排放量由原来 6.224t/a 降低至2.418 t/a。VOCs 占用企业自有指标,不须调剂。 SO₂排放量为 2.015t/a, NOx 排放量为 4.03t/a。总量控制指标从 2016 年已关停的淄博天筑工贸有限公司等 6 家企业中调剂。

五、政府下达的"十二五"污染物总量指标(吨/年)

化学需氧量	化学需氧量 氨氮		氮氧化物	颗粒物	VOCs				
	;								
六、建设项目环境影响评价预测污染物排放总量(吨/年)									
化学需氧量	氨氮	二氧化硫	氮氧化物	颗粒物	VOCs				
		2.015	4.03		2.418				
七、区、县环	保局初审	总量指标(四	屯/年)						
4 学 重 気 島	氨 氮	二氧化硫	氮氧化物	颗粒物	VOCs				

-- 2.015 4.03 -- 2.418

区县环保局审批意见:

根据南京科泓环保技术有限责任公司编制的《中国石油化工股份有限公司齐鲁分公司腈纶装置单体废气环保治理项目环境影响评价报告表》预测,该项目主要废气为 G1-JH 聚合、洗涤反应单体废气、G2-JH 溶剂回收塔顶废气、G4-JH 中间罐区储罐挥发废气、G24-CY 原料罐区储罐挥发废气,废气主要成分是 VOCs、丙烯腈、丙烯酸甲酯、二甲基甲酰胺、 $S0_2$ 、二甲胺,同时,催化氧化处理污染物会产生二次污染物 NO_x , SCR 脱硝会产生二次污染物氨气。本项目建成后 VOCs 排放量为 2.418t/a, SO_2 排放量为 2.015t/a,NOx 排放量为 4.03t/a。

按照《关于规范市级建设项目主要污染物排放总量确认的通知》(淄环函 2019[10]号)文件要求,二氧化硫总量指标实行 3 倍替代,氮氧化物总量指标实行 2 倍替代,该项目污染物需调剂 SO₂ 6.045t/a, NOx8.06t/a,总量控制指标从 2016 年已关停的淄博天筑工贸有限公司等 6 家企业中调剂。VOCs 排放量由原来 6.224t/a 降低至 2.418 t/a,不需调剂。

本项目废水主要是碱洗废水,废水排放量 2393.6 t/a,经现有污水管网排入开泰石化污水处理站处理达标后排放至光大水务(淄博)有限公司水质净化三分厂,故该企业 COD、氨氮占用山东开泰石化股份有限公司的总量指标。

综上,企业在生产过程中污染物排放总量不得超过环评报告 表中核算的总量指标。

(公章)

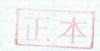
2019年3月5日

关于腈纶厂单体废气项目废气量的说明

根据腈纶装置单体废气环保治理项目的环评报告表,废气排放量为 4600Nm³/h。项目环评报告表是依据可行性研究报告编制,在项目可行性研究报告阶段废气排放量是根据原有环保设施风机风量估算的,其中二甲胺废气原先采用等离子装置处理,需用大量空气稀释,稀释后的二甲胺废气和原料储罐、中间罐区、聚合车间反应单体废气流量共计为 4600Nm³/h。进入项目基础设计阶段,因采用上海东化环境工程有限公司的催化氧化系统处理后,取消了原等离子处理装置,无需大量空气稀释,进废气处理设施的废气流量减少为 1377Nm³/h。具体废气量计算如下:

- 1) <u>丙烯腈储罐尾气 130Nm³/h。</u>依据丙烯腈储罐最大进料量 100t/h,折合体积流量约 125m³/h,在进料的同时将罐内的气体排出,考虑温度变化的影响,丙烯腈储罐尾气按 130Nm³/h 设计。
- 2) <u>丙烯酸甲酯储罐尾气 25Nm³/h。</u>依据丙烯酸甲酯储罐最大进料量 24t/h,折合体积流量约 25m³/h,在进料的同时将罐内的气体排出,丙烯酸甲酯储罐尾气按 25Nm³/h 设计。
- 3)中间罐区 1#引风机输送气包括 1#回单罐尾气 2.5Nm³/h, 2#回单罐尾气 2.5Nm³/h, 混合单体储罐尾气 12.5Nm³/h, 聚合物制备供料罐尾气 12.5Nm³/h, 合计 30Nm³/h。 依据 1#回单罐和 2#回单罐最大进料量均为 1.8t/h, 折合体积流量约 2.25m³/h, 尾气各按 2.5Nm³/h 设计。混合单体储罐和聚合物制备供料罐最大进料量均为 10t/h, 折合体积流量约为 12.5m³/h, 尾气各按 12.5Nm³/h 设计。
- 4) <u>1#集气箱尾气包括 1~8#淤浆罐尾气共计 40Nm³/h。</u>依据淤浆罐最大进料量为 8t/h, 折合体积流量约 10m³/h,考虑淤浆罐相互连通和操作弹性,1#集气箱尾气按 40Nm³/h 设计。
- 5) 2#集气箱尾气包括 1#聚合釜尾气 35Nm³/h, 2#聚合釜尾气 35Nm³/h, 1#头道淤浆供料槽尾气 4Nm³/h, 2#头道淤浆供料槽尾气 4Nm³/h, 1#再淤浆供料槽尾气 7Nm³/h, 2#再淤浆供料槽尾气 7Nm³/h, 合计 92Nm³/h。依据 1#和 2#聚合釜连续正常运行时补充氮气量最大为 35Nm³/h,在补氮的同时排出罐内气体,排出尾气各按 35Nm³/h设计。1#和 2#头道淤浆供料槽连续正常运行时补充氮气量最大为 4Nm³/h,排出尾气各按 4Nm³/h 设计。1#和 2#再淤浆供料槽连续正常运行时补充氮气量最大为 7Nm³/h,排出尾气各按 4Nm³/h 设计。1#和 2#再淤浆供料槽连续正常运行时补充氮气量最大为 7Nm³/h,排出尾气各按 7Nm³/h 设计。
- 6) 3#集气箱尾气包括 1#淋洗塔尾气 130Nm³/h, 2#淋洗塔尾气 130Nm³/h, 合计

- <u>260Nm³/h。</u>依据淋洗塔前端工艺可能出现的最大气量工况设计,各按 130Nm³/h。
- 7)<u>汽提塔供料槽尾气 95Nm³/h。</u>依据汽提塔供料槽最大进料量 75t/h,折合体积流量约 93.7m³/h,在进料的同时将罐内的气体排出,汽提塔供料槽尾气按 95Nm³/h 设计。
- 8) <u>中间罐区 3#引风机输送气包括浓液供料罐尾气 15Nm³/h,稀液供料罐 20Nm³/h,DI供料罐尾气 20Nm³/h,原料制备供料罐尾气 20Nm³/h,合计 75Nm³/h。</u>依据浓液供料罐最大进料量 12t/h,折合体积流量 15m³/h,在进料的同时将罐内的气体排出,气量按 15Nm³/h 设计。稀液供料罐、DI 供料罐、原料制备供料罐最大进料量均为 16t/h,折合体积流量为 20m³/h,在进料的同时将罐内的气体排出,气量各按 20Nm³/h 设计。
- 9)<u>二甲基甲酰胺尾气 29Nm³/h。</u>依据 DMF 储罐最大进料量 27t/h,折合体积流量约 28.5m³/h,在进料的同时将罐内的气体排出,DMF 储罐尾气按 29Nm³/h 设计。
- 10) 除水器废气包括三塔装置再沸器 2 放空气 430Nm³/h, 三塔装置汽水分离罐尾气 152Nm³/h, 焦油塔供料槽尾气 18Nm³/h, 合计 600Nm³/h。原采用等离子装置处理, 需用大量空气稀释,采用我司催化氧化系统处理后,取消了原等离子处理装置,无 需大量空气稀释,气量按 600Nm³/h 设计。


以上尾气合计 1377Nm³/h。

本项目环评报告表中所列废气均进入废气处理设施进行了处理,并减少了污染物排

放。

上海东化环境工程有限公司 2020年6月16日

检验报告

淄环益(检)字2020年 第 Y9号

项目名称: 腈纶装置单体废气环保治理项目

委托单位: 中国石油化工股份有限公司齐鲁分公司

完成日期: 2020年 04月 27日

检测性质: 委托

淄博环益环保检测有限公司

淄博环益环保检测有限公司

环境检测报告表

委托单位	ch Bl Z hh	化工股份有简	司 菌校	地址 淵	淄博市高新区	
2000000	4,1914140					
采样日期		2020.4.17	分析	日期 20	2020.4.17-4.26	
检测依据	HJ836-2017 DB37/T 2703	固定污染源度 5-2015 固定剂	5染源废气 二	克 物的測定 重量 氧化硫的測定 氧化物的測定	紫外吸收法	
主要测试设备	螃应 3023 彗	紫外差分烟4	气综合分析仪	(HY/FI058)		
检测点位			G1 废气排	非气筒出口		
检测日期		2020.4.17			2020.4.18	
检测频次	第一次	第二次	第三次	第一次	第二次	第三次
运行负荷	80%	80%	80%	80%	80%	80%
高度 (m)	20	20	20	20	20	20
内径 (m)	0.3	0.3	0.3	0.3	0.3	0.3
烟温 (℃)	108.7	108.7	109.0	119.1	118.8	119.2
含氧量 (%)	20.5	20.4	20.4	20.5	20.5	20.4
风量 (m³/h)	1476	1582	1499	1245	1268	1227
二氧化硫实测浓度 (mg/m³)	<2	<2	<2	<2	<2	<2
二氧化硫折算浓度(mg/m³)	<2	<2	<2	<2	<2	<2
二氧化硫排放速率(kg/h)						
氮氧化物实测浓度 (mg/m³)	5	6	6	5	7	5
氯氧化物折算浓度 (mg/m³)		****				
氮氧化物排放速率 (kg/h)	0.007	0.009	0.009	0.006	0.009	0.006
		以下	空白			1
备注	本次检测结	果不予评价。				

淄博环益环保检测有限公司

环境检测报告表 ^{淄环益(检)字 2020年第 179}号 共

共6页 第2页

/田 /	怀益(检):	子 2020	平 界 I	75			共	0 贝 年 2 月	1	
委托单位	中国石油	由化工股份	有限公司	可齐鲁分	公司	单位地址 淄博市高新区				
采样日期		2020.	4.17-4.18	3		分析	斤日期	2020.4.	17-4.18	
检测依据	HJ/T 397-2007 GB/T16157-19 HJ 38-2017 固 HJ/T 37-1999 GB/T 14676-1 HJ 533-2009 ³	96 固定污染 定污染源废 固定污染源 993 空气质量 F境空气和原	於源排气中 气 总烃、 排气中丙 量 三甲胺 接气 氨的	颗粒物测定 甲烷和非 烯腈的测定 的测定 气 到测定 纳氏	甲烷总烃的 至 气相色的 相色谱法 试剂分光	的测定 气相 普法 光度法	色谱法			
主要测试设备	G5 气相色谱位 GC-4290 气相			2 3072 型卷	冒能双路烟	气采样器(HY/FI051)、	722N 分光光度计	(HY/FX029)	
检测点位	检测日期	检测频次	生产负荷	高度 (m)	内径 (m)	烟温(℃)	风量 (m³/h)	VOCs(以非甲 烷总烃计) 排放浓度 (mg/m³)	V0Cs(以非月 烷总烃计) 排放速率 (kg/h)	
		第一次	80%	20	0.3	108.7	1476	2.16	3.19×10 ⁻³	
	2020.4.17	第二次	80%	20	0.3	108.7	1582	2.13	3.37×10 ⁻³	
G1 废气排气筒		第三次	80%	20	0.3	109.0	1499	2020.4. 722N 分光光度计 VOCs (以非甲烷总烃液度(mg/m³) 2.16 2.13 2.13 2.18 1.99 2.04 丙烯溶液度(mg/m²) 未检出	3.19×10 ⁻³	
(出口)		第一次	80%	20	0.3	119.1	1245	2.18	2.71×10 ⁻³	
	2020,4,18	第二次	80%	20	0.3	118.8	1268	1.99	2.52×10-3	
	202011110	第三次	80%	20	0.3	119.2	1227	2.04	2.50×10-3	
检测点位	检测 日期	检测 频次	生产负荷	高度 (m)	内径 (m)	烟温 (℃)	风量 (m³/h)	丙烯腈 排放浓度	丙烯腈 排放速率 (kg/h)	
		第一次	80%	20	0.3	108.7	1476	未检出		
	2020.4.17	第二次	80%	20	0.3	108.7	1582	未检出		
G1 废气排气筒		第三次	80%	20	0.3	109.0	1499	未检出		
(出口)		第一次	80%	20	0.3	119.1	1245	未检出		
	2020.4.18	第二次	80%	20	0.3	118.8	1268	未检出		
		第三次	80%	20	0.3	119.2	1227	未检出		
检测点位	检测 日期	检测频次	生产 负荷	高度 (m)	内径 (m)	烟温(℃)	风量 (m³/h)	排放浓度	三甲胺 排放速率 (kg/h)	
		第一次	80%	20	0.3	108.7	1476	未检出		
	2020.4.17	第二次	80%	20	0.3	108.7	1582			
G1 废气排气筒		第三次	80%	20	0.3	109.0	1499			
(出口)		第一次	80%	20	0.3	119.1	1245			
	2020.4.18	第二次	80%	20	0.3	118.8	1268			
		第三次	80%	20	0.3	119.2	1227			
检测点位	检测 日期	检测 频次	生产 负荷	高度 (m)	内径 (m)	烟温(℃)	风量 (m³/h)	排放浓度	氨 排放速率 (kg/h)	
		第一次	80%	20	0.3	108.7	1476	(C) (C) (C)	4.97×10	
	2020.4.17	第二次	80%	20	0.3	108.7	1582	100000000	5.30×10	
G1 废气排气筒		第三次	80%	20	0.3	109.0	1499		5.94×10	
(出口)		第一次	80%	20	0.3	119.1	1245	3.74	4.66×10	
	2020.4.18	第二次	80%	20	0.3	118.8	1268	3.56	4.51×10	
	本次检测结	第三次	80%	20	0.3	119.2	1227	3.48	4.27×10	

淄博环益环保检测有限公司

环境检测报告表

S(((I	工长 (払)中		先 1型		ANC	口	,	# 6	百 勞 2	百	
海 海 海 海 海 海 海 海 海 海 海 海 海 海 海 海 海 海 海	1			年第 Y9 号有限公司齐			单位	r Hih H	共 6	页 第 3 淄博市		
采样日期	1.154	н иш і		4.17-4.18	自刀厶門	_	分析				17-4.26	
木件口朔			2020.2	+.17-4.10		147.5001	浓度			2020.4.	最大值	
采样日期	检测巧	目	检验	则点位	第一次		二次		三次	第四次	取入但 (mg/m³)	
			上回点	参照点 1#	1.24		16	_	1.24	1.19	(IIIg/III)	
	VOCs(以	-H- EE		监控点 2#	1.53	10000	55	_	1.35	1.40		
	烷总烃			监控点 3#	1.39		39	1.41		1.37	1.55	
				监控点 4#	1.50		41	_	1.35	1.40		
				参照点 1#	0.03		04	_	0.04	0.03		
			下风向监控点 2#		0.05	20000	06		0.07	0.06	10100	
	氨	氨		监控点 3#	0.06	_	06	_	0.07	0.07	0.08	
			下风向监控点 4#		0.08	0.	07	(0.08	0.06		
2020.4.17			上风向	参照点 1#	未检出	未札	金出	未	检出	未检出		
	== 1×1	下図1		监控点 2#	未检出	未材	金出	未	检出	未检出	未检出	
	丙烯腈		下风向	监控点 3#	未检出	未村	金出	未	检出	未检出		
			下风向	下风向监控点 4#		未材	金出	未	检出	未检出		
		三甲胺		上风向参照点 1#		未村	金出	未	检出	未检出		
	= 181			监控点 2#	未检出		金出		检出	未检出	未检出	
	二中版			监控点 3#	未检出	未村	金出	未	检出	未检出	71474	
			下风向	监控点 4#	未检出	未村	金出	未	检出	未检出		
				环境松	验测期间气象	象参数						
日期	时间	温	度(℃)	湿度 (%RH)	风向	风i	東 (m/	s)	总云量	低云量	大气压 (kPa)	
	08: 46		9.4	39	西北		2.4	1		0	100.5	
	13: 04		16.4	38	西北		2.6		1	0	99.8	
2020.4.17	17: 06		10.2	36	西北		2.6		1	0	100.2	
	21: 10		8.5	38	西北		2.1		1	0	100.4	
备注												
				分析	f方法及检b	出限						
检测项目	1	检	测标准		检测仪器	路		,	仪器编号	+ 1	硷出限	
非甲烷总	烃	нј 6	04-2017	(G5 气相色谱	仪器		1	HY/FX00	5 0.0	07 mg/m^3	
氨		НЈ 5	33-2009	7	722N 分光光	度计	HY/FX029		0.0	01 mg/m^3		
丙烯腈		HJ/T	37-1999	GC GC	-4290 气相	色谱仪	Z]	HY/FX02	1 0.	2 mg/m^3	
三甲胺	G	B/T 1	4676-19	93 GC	-4290 气相	色谱仪	Z]	HY/FX02	1 2.5×	(10 ⁻³ mg/n	
						A		_				

淄博环益环保检测有限公司

环境检测报告表

淄环益(检)字	2020年第 Y9 号	共6页	第 4 页

委托单位	中国石	i油化工股份	有限公司齐	鲁分公司	单位地址 淄博市高新					高新区	
采样日期		2020.	4.17-4.18		分析	日期]	20	20.4.	17-4.26	
采样日期	检测项	= +/	SM 上台:		检测浓度	(mg	(m^3)			最大值	
木件口别	位侧坝		企测点位	第一次	第二次	第	三次	第四次	欠	(mg/m^3)	
		上风	句参照点 1#	1.20	1.15	1	.21	1.18			
	VOCs(以非		句监控点 2#	1.90	1.96	1	.94	1.91		1.97	
	烷总烃计		句监控点 3#	1.97	1.79	1	.86	1.82		1.57	
		2000000	句监控点 4#	1.53	1.71	1	.52	1.60			
			句参照点 1#	0.03			.02	0.02	_		
	氨		下风向监控点 2#		0.05		.04	0.06		0.08	
			句监控点 3#	0.07	0.07		.06	0.08		0.08	
2020.4.18			句监控点 4#	0.05	0.06	0.0	.07	0.08			
		500000000000000000000000000000000000000	句参照点 1#	未检出	未检出		检出	未检出			
	丙烯腈		句监控点 2#	未检出	未检出		检出	未检出		未检出	
		LIXI	下风向监控点 3#		未检出		检出	未检出			
		5.000	句监控点 4#	未检出	未检出		检出	未检出	NORMAN TO A STATE OF THE STATE		
			句参照点 1#	未检出	未检出	未检出		未检出	<u>></u> щ		
	三甲胺		句监控点 2# 句监控点 3#	未检出	未检出	_	检出	未检出		未检出	
			句监控点 3#	未检出	未检出		检出	未检出			
		1 // (1		测期间气象	7-2-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	八	1 <u>W.</u> LLI	八型口	ц		
							总云量			大气压	
日期	时间	温度(℃)	湿度(%RH)	风向	风速 (m/	风速 (m/s)		1 低元	云量	(kPa)	
	08: 40	13.5	39	东北	2.1		3	- :	2	100.2	
2020 4 19	09: 46	14.3	39	东北	2.1		3	2		100.2	
2020.4.18	10: 52	15.2	39	东北	2.0		3	2		100.1	
	13: 30	17.3	38	东北	2.1		3	2		100.1	
备注		·									
				方法及检出	The state of the s						
检测	项目	检测	小标准	检测	仪器	1	仪器编	号	1	俭出限	
非甲烷	总总烃	НЈ 60	04-2017	G5 气相台	色谱仪器	I	HY/FX0	05	0.0	07 mg/m^3	
复	Ĭ.	НЈ 53	33-2009	722N 分分	化光度计	I	HY/FX0	29	0.	01 mg/m^3	
丙烷	静 腈	HJ/T	37-1999	GC-4290 与	【相色谱仪	I	HY/FX0	21	0.	2 mg/m^3	
三甲	胺	GB/T 14	676-1993	GC-4290 气	【相色谱仪	I	HY/FX0	21	2.5×	10 ⁻³ mg/m	
·		<u> </u>		0	1= ↑ 北						
			2= O	项目区							
			3=0								
			4=0								

淄博环益环保检测有限公司

环境检测报告表

淄环益	(检)字 202	.0 年第 Y9	号			共6页	第 5]	页
委托单位	中国石油	1化工股份7	有限公司齐4	鲁分公司	单位地址	t:	淄博市	高新区
采样日期		2020.4.	.17-4.18		检测日期	JI I	2020.4.	17-4.26
检测点位				厂区废	水外排口			
检测日期		2020.4.17					0.4.18	
检测点 检测项目 (mg/b)	位第一次	第二次	第三次	第四次	第一次	第二次	第三次	大 第四次
pH (无量纲)	7.75	7.72	7.74	7.75	7.69	7.73	7.70	7.73
化学需氧量	352	337	349	341	350	341	353	347
氨氮	8.18	8.10	8.15	8.06	8.18	8.05	8.20	8.11
悬浮物	27	29	25	30	26	31	27	26
总氮	69.3	69.7	69.5	69.7	68.8	69.1	68.9	68.6
丙烯腈	未检出	未检出	未检出	未检出	未检出	未检出	未检出	出 未检出
硫酸盐	540	568	572	589	532	560	578	592
			以下	空白				
			检测分析	方法及检出	1限			
检测项目	方法依	技据		分析仪器		仪器编	号	检出限
pH (无量纲)	GB/T 692	0-1986	PH	IS-3E pH	计	HY/FX0	23	
化学需氧量	НЈ 828-	2017	50n	nl 酸式滴定	:管	HY/FF008	3-10	4 mg/L
氨氮	НЈ 535-	2009	722N	可见分光光	度计	HY/FX0	29	0.025 mg/L
悬浮物	GB/T 1190	01-1989	FA2	004B 电子尹	天平	HY/FX0	16	4 mg/L
总氮	НЈ 636-	2012	TU-1901	紫外可见分	光光度计	HY/FX0	07	0.05 mg/L
丙烯腈	HJ/T 73-	-2001	GC-4	290 气相色	谱仪	HY/FX021		0.6 mg/L
硫酸盐	НЈ84-2	2016	YC7	000 离子色i	谱仪	HY/FX0	43	0.018 mg/L
备注	本次检测结	果不予评价						

淄博环益环保检测有限公司

环境检测报告表

	淄	环益(检)与	2020年9	第 Y9 号				共	6页 匀	第6页		
委托	单位	中国石油化	化工股份有限·	公司齐鲁	分公司	检	测地点		广区	四周边界		
检测	项目		工业企业厂界:	环境噪声	检测仪器			AW	AWA5688 型多功能声级计 (HY/FI068)			
检测	日期		2020.4.17-4	.18		检	测依据		GB 12	348-2008	3	
	ı	噪声检测结果			[b]	自	单位: dB	(A)				
						ŧ	金测结果	[Leq(A)]			
检测编号		检测点位	声源类型		2020).4.17			2020	0.4.18		
				检测 时间	检测 结果	检测 时间	检测 结果	检测 时间	检测 结果	检测 时间	检测 结果	
A1	项目	区东边界外 1m	生产	09:26	53. 7	22:02	48. 0	09:01	52. 4	22:03	47. 8	
A2	项目	区南边界外 1m	生产	09:42	55. 1	22:20	49. 1	09:17	52. 3	22:18	49. 0	
A3	项目	区西边界外 1m	外 1m 生产 09:59 54.1 22:37 48.6 (09:45	53. 3	22:36	49. 2	
A4	项目	区北边界外 1m	生产	10:15	53. 1	22:57	48. 7	10:02	53. 0	22:55	48. 7	
			•	噪声	检测气 象	多数						
	检测日	日期	检测时间	ij		风速(r	n/s)		天	气状况		
	2020	4.17	09:00~11	:00		2.4			晴			
	2020.4	4.17	22:00~23	:00		2.1			晴			
	2020.4	4.10	09:00~11	:00		2.1				阴		
	2020.	4.10	22:00~23	:00		2.0			阴			
					A A	ı		力北				
			A3	项	目区			.1				
					▲ A2	!						
备	注											

以下空白

附件7

建设项目工程竣工环境保护"三同时"验收登记表

填表单位(盖章):淄博环益环保检测有限公司填表人(签字): 项目经办人(签字):

		277十四(皿平川田下	1. 1 11111. 1	VIT (VI 11 IV Z	1 . 1 . 22.1	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	J /·		. 77 1	1 2T/1// / / 7	~ 1 /	•								
建设项目		项目名称	腈纶装置单体废气环保治理项目							建设地点			淄博市高新区金晶大道 202 号腈纶厂							
		行业类别	N7722 大气污染治理							建设性质		新建 改扩建 技术改造√								
		设计生产能力	/						实际生产能力			/								
		投资总概算(万元)	2106 万元						环保投资总概算(万元)			2106万元 所占				比例(%) 10			0	
	[环评审批部门	淄博高新技术产业开发区环境保护局						批准文号			淄高新环报告表[2019]14 号			批准时间			2019年3月5日		
		初步设计审批部门							批准文号					批准时间						
	Ħ	环保验收审批部门							批准文号						批准时间					
		环保设施设计单位	环保设施施工单位									环保设施监测单位			淄博环益环保检测有限公司				公司	
		实际总投资(万元)	2226 万元						实际环保投资(万元					所占比例(%)			100			
		废水治理(万元)	31 废	31 废气治理(万元) 2140			声治理(万元)		- () () () () ()			绿化及生态(万元) 0		其它(万元)			20			
		新增废水处理设施能							新增废气处理设施			1			年平均工作时			8760		
		力(t/d)							(m^3/h)					间(h/a)						
		建设单位	中国石油化工股份有限公司 邮			政编码	福码 255000		联系电话			0533-3576365		环评单位 南京		南京和	京科泓环保技术有限责任公司			
污物放标总控工建项详染排达与量制业设目填		污染物	原有排放 量(1)	本期工程实 际排放浓度 (2)	本期工 许排放 (3	浓度	本期工程产 生量(4)	本期工身削减		本期工程实 际排放量(6)	定排	工程核 放总量 (7)	本期工程"以新 带老"削减量(8)					区域平衡替 代削减量(11)	排放增减量 (12)	
		废水																	,	
		化学需氧量																		
		氨氮																		
		石油类																		
		废气																		
		二氧化硫		<2	50)				0.00876	2.	.015								
		烟尘																		
		工业粉尘																		
	ŀ	氮氧化物		7	10					0.0701		1.03								
		VOC_S		2.18	60)				0.0255	2.	.418								

注:1、排放增减量:(+)表示增加,(-)表示减少。 2、(12)=(6)-(8)-(11),(9)=(4)-(5)-(8)-(11)+(1)。3、计量单位:废水排放量——万 t/a;废气排放量——万 t/a;废气排放量——万 t/a;水污染物排放浓度——mg/L;大气污染物排放浓度——mg/m³;水污染物排放量——t/a;大气污染物排放量——t/a。